L2-index Theorem for Elliptic Differential Boundary Problems
نویسندگان
چکیده
Suppose M is a compact manifold with boundary ∂M . Let M̃ be a normal covering of M . Suppose (A, T ) is an elliptic differential boundary value problem on M with lift (Ã, T̃ ) to M̃ . Then the von Neumann dimension of kernel and cokernel of this lift are defined. The main result of this paper is: These numbers are finite, and their difference, by definition the von Neumann index of (Ã, T̃ ), equals the index of (A, T ). In this way, we extend the classical L-index theorem of Atiyah to elliptic differential boundary value problems.
منابع مشابه
L2-transforms for boundary value problems
In this article, we will show the complex inversion formula for the inversion of the L2-transform and also some applications of the L2, and Post Widder transforms for solving singular integral equation with trigonometric kernel. Finally, we obtained analytic solution for a partial differential equation with non-constant coefficients.
متن کاملResidual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems
In this paper, we investigate residual-based a posteriori error estimates for the hp finite element approximation of semilinear Neumann boundary elliptic optimal control problems. By using the hp finite element approximation for both the state and the co-state and the hp discontinuous Galerkin finite element approximation for the control, we derive a posteriori error bounds in L2-H1 norms for t...
متن کاملExistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملStudies on Sturm-Liouville boundary value problems for multi-term fractional differential equations
Abstract. The Sturm-Liouville boundary value problem of the multi-order fractional differential equation is studied. Results on the existence of solutions are established. The analysis relies on a weighted function space and a fixed point theorem. An example is given to illustrate the efficiency of the main theorems.
متن کامل